

Battery Thermal Management for HEV & EV – Technology overview Frédéric LADRECH – Program Manager. Valeo Thermal Systems.

Automotive Summit Automotive Summit – Nov. 10th, 2010

Agenda

Introduction

- Hybridization level & Decision making factors
- Battery thermal behaviour

Battery Thermal Management technologies

- Air cooling
- Liquid cooling
- Refrigerant cooling
- Technology comparison

Trends & Next steps

Hybridization levels

Hybrid or EV Category								
Functions	μ	µ-Mild	Mild	Full	Plug-in (PHEV)	Series HEV (EREV)	BEV	FCEV
Stop / Start	yes	yes	yes	yes	yes	Internal Combustion Engine with electric transmission or Internal Combustion Engine Generator with electric drive	No in-board generator, just a charger and electric drive	Fuel Cell Generator with electric drive
Regenerative Braking	optional (limited perf.)	yes	yes	yes	yes			
Electrical Boost	no	optional (limited perf.)	yes	yes	yes			
Slave Electric Drive	no	no	optional (limited perf.)	yes	yes			
Electric Drive as a own mode	no	no	no	optional (limited perf.)	yes			
ICE/ZEV Mode		ICE	ZE Mode			ZE Vehicle		
Battery Technologies			Ni-MH	Li-ion		Li-ion	Fuel cell	
			Battery Thermal Management					

Thermal System integration Exemple of PHEV

BTM integration into the overall thermal architecture

BTM Technologies - Decision making factors

1. Vehicle hybridization level

F-HEV vs. PHEV, EREV vs. BEV vs. FCEV

2. Battery technology

- NiMH *vs.* Li-Ion (NMC, LFP,...)
- Cylindric cells *vs.* Prismatic cells *vs.* Pouch cells

3. Battery capacity

M-HEV: < 1kWh vs. F-HEV, PHEV: 1÷ 5kWh vs. EREV: 5÷20kWh vs. BEV: 15÷40kWh

4. Power of e-motor

10 kW ÷ 70 kW

5. Result of individual OEM - risk assessment

- Coolant vs. HV-battery
- Refrigerant R-1234yf *vs.* HV-battery

6. Targeted integration level

- Battery as stand alone sub-system
- Battery as part of an overall energy management approach

7. Charging speed

Slow charging vs. Fast charging vs. Quick drop

The stakes : battery thermal behaviour

To avoid irreversible chemical processes during charging and discharging, which would lead to the loss of available Li ions, the cell temperature must be conditioned and monitored.

Technology Portfolio

Update date | 7

Automotive summit - November 10th, 2010

Passive air cooling

Principle

- A dedicated blower aspirate air through the battery pack from car cabin.
- Air at ambient cabin temperature exchange with battery pack.

Product & features

- Brushless motor.
- High efficiency and linear air volume control with PWM.
- Compatible with quick drop.
- Cooling power: from 0 to some 100 W

HEV Control Inlet-air Battery Unit temp. temp. Fan motor Charging / Cabin control signal Power supply Air signals **Inverter Control** Drive Unit Motor **Battery Battery** Cooling Unit

Schematic

Active air cooling

→ Heating is allowed by the addition of an electrical heater (air PTC).

Schematic

Product & features

- Brushless motor,
- High efficiency and linear air volume control with PWM,
- Dedicated evaporator.
- Compatible with quick drop.
- Cooling power: ~1kW

Thermo-electrical cooling-heating

Liquid cooling

Principle

- A secondary AC loop exchange cold with a coolant loop which thermally manage battery cells.
- Direct electrical heating or indirect electrical water heating are compatible with such architecture.

Schematic

Product & features

- Dedicated heat exchanger between refrigerent & coolant (chiller).
- → A second heat exchanger in contact with cells (from jacket to socket design).
- Decoupling of cabin comfort & battery temperature control.
- Compatible with fast charging.
- → Optimized cell temperature homogeneity.
- → Cooling power: some kW

Direct refrigerant cooling

Dedicated
to socket of
Compatibl
Optimized homogene
Low weigh
Cooling po

eatures

- heat exchanger (from jacket design).
- le with fast charging.
- cell temperature eity.
- nt, small packaging.
- ower: some kW.

Schematic

Technology overview

Technical choice according decision making factors

Update date | 13

Automotive summit – November 10th, 2010

Trends & Next steps

Trends

Ji-Ion Battery: main stream for Hybrids and EVs

- whatever the chemistry used, thermal management is mandatory
- choice of solution depends on OEM strategy

Air cooling

- Reduce blower package, weight.

Direct or liquid

- From specific jacket cooler to socket concept

Next steps

- Focus on affordable and weight reduction solutions.
- Battery standardization through battery modules.
- Should accept fast charging constraints.

Packaging will remain car specific
➔ Modular BTM concept from extendable base definition,

High performance & affordable solutions

Thank you for your attention.

